Системы управления компьютером мыслью. "Не фантастика, а реальность". Как управлять компьютером силой мысли. На заре компьютерной эры

Владимир Конышев участвует со своей командой "Нейроботикс" в предстоящих соревнованиях в Швейцарии. Его компания разрабатывает малоканальную нейрогарнитуру – устройство, позволяющее считывать сигналы с коры головного мозга и передавать их компьютеру. Проще говоря, управление компьютером происходит силой мысли . Такие разработки называют интерфейсами "мозг - компьютер".

Владимир, расскажите, пожалуйста, подробнее о вашем проекте и на какой стадии сейчас находится прототип нейрошлема?

Нейрогарнитура состоит из неопреновой шапочки-шлема, в которую встроены электроды. На задней стороне шапочки находится биоусилитель, передающий данные по Bluetooth вычислительному устройству, которым является компьютер. Сейчас основная сложность состоит в том, что для такой гарнитуры мы используем электроды, под которые добавляется электропроводящий гель. То есть кто-то должен нанести гель больному, требуется помощник. Наш следующий шаг - это разработка нейрогарнитуры на сухих электродах в 2017 году. После появления такого устройства интерфейс "мозг - компьютер" может использоваться большим числом людей без какой-либо помощи со стороны. Т аким образом, новые образцы будут более удобными для использования и намного более эстетичными.

Перед нами стояла задача разработать нейрогарнитуру, которую можно было бы использовать не только в лаборатории, но и в повседневной жизни. Эта цель была поставлена нами в рамках проекта для Фонда перспективных исследований. Мы работали над тем, чтобы нейрогарнитура была беспроводной, с небольшим количеством каналов, чтобы человек мог одновременно перемещаться и управлять робототехническим устройством, будь то квадрокоптер или колёсный робот.

А как будет решаться задача с помощниками? Ведь эти гарнитуры пока очень сложны и человеку требуется помощь третьей стороны, чтобы пользоваться такими устройствами.

Программа требует на начальном этапе консультации специалистов. Человеку нужно пройти специальное обучение, для чего создана программа. С её помощью человек учится управлять своими состояниями, которые и позволяют давать мысленные команды. Их достаточно легко вызвать, поэтому они называются макросостояниями. На обучение требуется около 30–60 минут, за это время большинство людей может освоить три базовые команды. Чтобы управлять умным домом и играть в компьютерные игры, этого вполне достаточно. Но, например, для управления квадрокоптером нужно освоить четыре команды, что уже даётся сложнее.

Какие сценарии для нейроинтерфейсов могут быть, кроме использования их людьми с ограниченными возможностями?

Во-первых, для здоровых такая гарнитура даёт возможность без джойстиков и клавиатур играть в компьютерные игры. Для людей же с нарушением моторных функций сфера применения значительно больше. Например, полностью парализованные люди могут управлять инфраструктурой умного дома. В одном из роликов мы продемонстрировали, как человек мысленно разгибает экзоскелет кисти, то есть фактически двигает рукой, как здоровый человек.

Также он может дистанционно управлять бытовыми приборами: включать телевизор или кондиционер. Тут схема простая: мысленно включается розетка, к которой подключён бытовой прибор. Это не фантастика, а уже реальность.

Существуют и другие сценарии использования нейроинтерфейсов. Например, человек может общаться с родственниками: мысленно печатать текст, который будет отправляться нужному адресату. Другой пример: полностью парализованный человек сможет управлять коляской на электроприводе при помощи нейрогарнитуры. В идеале разные методы управления будут дополнять друг друга. Следующее добавление - система трекинга глаз. Таким образом мы получим гибридный нейроинтерфейс: цель мы выбираем глазами, а с помощью сигналов мозга говорим, что нужно сделать с этим объектом. Представьте, что человек парализован и передвигается на коляске. Так как он может двигать глазами, он взглядом выбирает дверь, а мысленно даёт коляске команду: "Хочу, чтобы коляска подъехала к этой двери". То есть он больше не должен детально продумывать действия коляски и приказывать ей: "Поверни направо, а затем налево". Конечно, коляска при этом должна обладать возможностями интеллектуального управления и уметь сама объезжать препятствия.

Можно представить и то, как подобная технология используется вне дома. Например, человек управляет квадрокоптером и хочет снять панорамный вид в определённой точке. Человек просто взглядом указывает коптеру нужную траекторию, не используя джойстиков или других систем контроля, - такое сценарное управление в скором времени станет возможным.

- Были ли у вас уже покупатели?

Да, одна из наших коммерческих ниш - уроки нейропилотирования в школе. С помощью нейрошлемов дети управляют роботами. Причём одним и тем же устройством могут управлять два человека, что учит построению команды. Можно сказать, что это новое направление в образовании и бизнесе. Ведь нейрошлем сам по себе неинтересен, он нужен для управления объектами. Для школьников это будто телекинез, в этом есть нечто новое и необычное. Такие уроки развивают интерес школьников к робототехнике и нейроуправлению, а также повышают интерес к точным наукам - физике, кибернетике, нейрофизиологии. Подобная мотивация может повлиять на их выбор профессии и привести в нашу сферу новых молодых специалистов.

- И сколько у вас таких заказчиков среди школ?

Мы начали поставлять комплекты для нейропилотирования в школы с ноября прошлого года. Их немного, пока около 10: Москва, Тюмень, Ханты-Мансийск, Набережные Челны. В основном это бюджетные учреждения, где есть занятия по робототехнике.

- А как вы оцениваете поддержку государством таких проектов?

Есть Национальная технологическая инициатива, в рамках неё появилось направление "Нейронет", связанное с нейротехнологиями. Государство на верхнем уровне всячески поддерживает внедрение таких технологий в разные области. Но есть тут свои сложности. Мы много времени тратим на заполнение бумажек, которые замедляют запуск проектов. От нас требуют полной документации, подробных описаний, но мы ведь не знаем, сколько нужно будет закупить таких-то винтиков в апреле 2018 года? Ответить на эти вопросы в высокотехнологичных проектах очень сложно, если не невозможно. В "Нейронете" несколько проектов, и прошли только два. Хотелось бы, чтобы процесс шёл быстрее. За рубежом уже давно поняли, что, если хочешь делать инновации, нужно пропускать их по упрощённой схеме, а не по схеме бюджетирования строительства дороги - сколько нужно цемента, песка и проч. В инновациях такая схема не работает, и каждый потерянный день - это немалые деньги. Ещё немного времени - и эти продукты мы будем получать из-за рубежа, из того же Китая.

Несмотря ни на что, я верю, что высказанный высшим руководством интерес реализуется. Но хотелось бы, чтобы некоторые процедуры были упрощены и проходили быстрее.

- И почему такие проблемы, на ваш взгляд, возникают?

Конечно, работоспособную структуру сложно создать. У всех на слуху "Сколково", как они долго разрабатывали подходы. Есть другие фонды, такие как фонд Бортникова, который уже давно успешно реализует проекты. А тут создана новая структура. Надо понимать, что схема работы ещё в процессе совершенствования, надо её структурировать, найти правильных людей.

- Как вы оцениваете рынок нейротехнологий в России и за рубежом?

Конкуренция серьёзная, причём и здесь, и за рубежом. У нас в России много лабораторий, хороших исследовательских центров, среди самых известных учёных - профессора Александр Яковлевич Каплан и Александр Алексеевич Фролов. В целом у нас есть хороший потенциал и задел на будущее, мы можем в направлении нейротехнологий серьёзно выстрелить. Сейчас важность нейротехнологий стала очевидна обществу.

За рубежом, конечно, нейротехнологиями намного больше занимаются. Но нельзя сказать, что мы отстали. В целом наша техника в этой области находится на мировом уровне, а в некоторых направлениях мы даже опередили иностранных коллег. "Кибатлон" как раз позволит нам сравнить наши нейроинтерфейсы с разработками других стран. Наш очевидный плюс - простота системы. Ведь чем технология проще, тем она надёжнее. В нашей нейрогарнитуре всего 8 каналов. А у других участников "Кибатлона" - 32 или даже 128 каналов. Но, несмотря на меньшее количество каналов, мы всё равно можем выступить на достойном уровне.

Мы, учёные и бизнес, не чувствуем, что отстаём. И если мы сейчас грамотно используем шанс и совместим свои технологии с вертикализаторами, экзоскелетами и прочим ассистивным оборудованием, то поможем большому количеству людей жить полноценной жизнью. Ведь российские изделия на порядок дешевле, они доступнее. Поэтому у нас и хороший экспортный потенциал.

- А сколько стоит ваша нейрогарнитура сейчас?

80 тысяч рублей. Да, пока это дорого. Но сейчас как раз работаем над тем, чтобы гарнитура обходилась в 25 тысяч рублей, что уже делает её более доступной для массового пользователя.

Как вы считаете, смогут ли нейротехнологии в будущем также помогать в восстановлении каких-либо мозговых функций?

Да, безусловно, мы работаем над тем, чтобы это стало возможным. Учёные готовы, большие институты готовы, следующий шаг за государством. В нашем проекте нейроинтерфейс - всего лишь одна из семи технологий. Уже было научно доказано, что комбинация нейроинтерфейсов с электрическим стимулятором мозга эффективно помогает больным с инсультом, нейротравмами, а также детям с аутизмом, с синдромом дефицита внимания и аффективными расстройствами (агрессия и прочее). Такие возможности мы также описали в рамках проекта "Нейронета" и эти технологии надо внедрять в массы.

- А когда рынок нейроинтерфейсов сможет стать действительно массовым?

За пять лет достичь этого уровня вполне реально. Два года нужно на саму разработку технологий и пару лет - на их апробирование, клинические испытания и регистрацию как медицинских изделий.

Нейротехнологии могут действительно помочь многим людям с ограниченными возможностями, а это 13 миллионов человек в России. Это большой рынок. И для нас также доступен массовый рынок в сфере игр и обучения. Как только мы выйдем на расшифровку микросостояний, возможно будет настроить более тонкое управление. И тут произойдёт взрывной рост.

Также мы работаем над тем, чтобы предоставить сторонним разработчикам возможность создавать для нейрогарнитуры свои программы, игры и так далее. Это простимулирует рынок программ на основе нейроинтерфейсов. За рубежом есть уже подобный успешный кейс. Компания NeuroSky выпускает одноканальную систему "мозг - компьютер", фиксирующую биоритмы. И они предоставляют её для разработчиков и партнёров, которые создали множество приложений на её основе - как развлекательных, так и образовательных. Такие программы стоят от 2 до 5 евро, а сама гарнитура - 15–16 тысяч рублей. Они построили на этом большую индустрию: компания продала за пять лет более миллиона подобных устройств.

Экзоскелеты, механические руки, глаза-камеры и уши-микрофоны, передача мысли от мозга к мозгу - всё это уже реальность, возникшая на наших глазах в последние 15-20 лет. Технологии пока несовершенны, а некоторые - принципиально несовершенны на нашем уровне знаний. Однако первый удар по мячу на чемпионате мира по футболу в 2014 году нанёс человек с парализованными ногами. И пусть это выглядело не особенно впечатляюще, но человек управлял механической конечностью, и управлял мысленно.

История началась в 60-е годы прошлого века, когда в нескольких лабораториях стали работать с имплантированными в мозги обезьян и людей электродами. Человек с таким имплантатом нажимал на кнопку, меняя слайды в проекторе. Затем кнопку от проектора отсоединяли, но слайды продолжали переключаться по сигналу. В это же время начались работы по восстановлению слуха глухих через микрофон, совмещённый со слуховым нервом. Но настоящий прорыв лет назад, когда появились достаточно мощные компьютеры и новые алгоритмы.

Как работают нейроинтерфейсы, нам рассказал Александр Каплан, руководитель лаборатории нейрофизиологии и нейрокомпьютерных интерфейсов МГУ им. М.В. Ломоносова.

Читает ли компьютер мысли?

В интерфейсе "мозг - компьютер" нет ничего мистического, - говорит Каплан. - Технология позволяет регистрировать электрическую активность мозга и преобразовывать её в команды для внешних исполнительных систем. Мозг спрятан глубоко в черепе, но электрические поля, создаваемые нервными клетками, пробиваются через кости, мышцы, кожу и улавливаются электродами на кожной поверхности головы. Это хорошо всем знакомый метод электроэнцефалографии - нет такой поликлиники, где бы он ни применялся для диагностики. Мы в лаборатории тоже занимались диагностикой, но в какой-то момент мне стало интересно: а почему бы этот сигнал не послать на какое-нибудь внешнее устройство, чтобы управлять им?

Когда мы управляем руками, мы их видим и ощущаем, но электрических полей в голове мы не чувствуем. Оказалось, что этому можно научиться: на экране компьютера испытуемому показывают активность мозга и просят так или иначе изменить её. Постепенно у него начинает получаться. Отсюда уже недалеко до нейроинтерфейса, нужно лишь послать изменение ритма на внешнее устройство.

Что можно сделать? Ну, конечно, игрушки - они есть уже сейчас. Например, человек управляет игрушечной машинкой, изменяя активность мозга, - рассказывает Каплан. - Задаёт ей повороты. А наша задача - вычленить те самые сигналы мозга, составить нужный алгоритм. Ошибок должно быть как можно меньше, а время распознавания сигнала как можно короче. Если с момента, когда ребёнок задумал повернуть машинку, до самого действия проходит полчаса, какая уж тут игра!

Лучше всего спонсируются медицинские применения. И, надо сказать, интерфейс "мозг - компьютер" там нужнее всего. Например, есть постинсультные пациенты, которые не могут говорить и находятся в таком состоянии годами. Что делаем? Рисуем на экране компьютера матрицу, где в каждой клеточке написана буква. Клеточки мигают по очереди со скоростью 5-6 помигиваний в секунду. А в это время компьютер показывает энцефалограмму: если какая-то буква заинтересовала человека, реакция будет сильнее. Мы детектируем внимание и печатаем букву. Сейчас, по словам учёного, в его лаборатории скорость распознавания сигнала - примерно 8-10 букв в минуту, а безошибочных попаданий 95%.

Такой аппарат уже год тестируется в Первой градской больнице. Человек может общаться с помощью интерфейса, но пока медленно. В разработке - выход в интернет усилием мысли.

То же самое с парализованными пациентами, которые научились управлять инвалидным креслом, да и механическим экзоскелетом, если вспомнить первый удар на ЧМ-2014.

Есть и другой способ расшифровать намерения мозга - вживить в него электроды. В мозг втыкается пластинка, усеянная иголочками. Сама пластинка очень маленькая, примерно пять на пять миллиметров, а иголочек в ней около сотни. Это электроды, которые регистрируют электрическую активность отдельных нервных клеток в том месте, куда воткнуты. На голове есть разъём, который связывает по проводам мозг с компьютером и дальше - с внешним устройством. Уже есть пациенты, несколько человек, которые хорошо двигают, например, механической рукой: в эксперименте 2012 года женщина манипулятором берёт чашку кофе, шоколадку со стола, подносит её ко рту. Эта технология более чувствительна: электрод на коже снимает сигнал со 100-300 тысяч клеток, а здесь с каждого нейрона.

При имплантации такой пластины медику не требуется попасть точно в то место, которое управляет руками здорового человека. Достаточно воткнуть электрод в зону коры, которая в целом отвечает за подобные действия, а мозг сам разберётся, какие сигналы ему посылать. Такой вот он, мозг, умный.

Недавно прошло сообщение, что американцы собираются таким образом управлять самолётом. Реально ли это?

Реально. Только самолёты будут падать, - объясняет Каплан. - Кто ж возьмётся управлять летательным аппаратом, если сигнал распознаётся через полторы - две секунды, да ещё с пятью процентами ошибок? Пока я не видел подобных разработок.

Как почувствовать механическую руку?

Одно дело - приказать механизму, совсем другое - получить от него обратную связь. Например, ощутить механической рукой шершавость поверхности, почувствовать, куда едет игрушечная машинка, увидеть картинку с телекамеры так, будто это твой собственный глаз. Здесь успехи киборгизации скромнее, но они есть.

Во-первых, обезьянам пробовали вживлять электроды не только в то место, откуда идёт сигнал, но и в сенсорную кору, которая связана с ощущениями. А на механической руке были датчики, распознающие текстуру предмета. И обезьяны уверенно отличали шероховатые поверхности от гладких.

Во-вторых, можно обучить мозг получать сигнал об успешности действия:

Допустим, человек управляет машиной на мониторе компьютера. Если он делает успешный поворот, то в сенсорную кору его мозга поступает сигнал с частотой 10 герц, а если неверно - 30. Таким образом мозг понимает, правильно он действует или нет. И человек с закрытыми глазами может регулировать активность мозга и управлять механизмом, - рассказывает Каплан.

В-третьих, сенсорные датчики уже используются. Например, в видеокамерах для слепых. Конечно, мозг не получает столь же детальную информацию, как от живого глаза, потому что в сетчатке 126 миллионов чувствительных единиц - в компьютерном мире это называется пикселями. У настоящего глаза каждый такой пиксель имеет выход в мозг. Столько проводов от камеры внутрь головы не проведёшь.

В природе не предусмотрена встреча со 126-мегапиксельными камерами, - говорит Каплан. - И пока нет соображений, как это сделать искусственно.

Но даже 400 входов уже позволяют слепому "видеть" препятствия и ориентироваться.

Когда мозг сольётся с компьютером?

Год назад появилось сообщение, что через интерфейс "мозг - компьютер" один человек передал слово "привет" другому. Оба были в специальных шапочках. Можно ли научиться передавать не только отдельные слова, но и связные мысли? Или вообще подключить мозг к компьютеру настолько, чтобы человек, допустим, видел панораму Манхэттена чужими глазами, то есть камерами, а сам находился в Ростове? И ещё управлял этими "глазами"? Где предел технологии?

Если бы мы научились транслировать тексты в мозг, это было бы очень круто, - говорит Каплан. - Такие опыты проводят уже лет шестьдесят, с тех пор как в человеческий мозг начали вживлять электроды, но пока результатов нет. Если в алфавите 33 буквы, вы должны стимулировать мозг в 33 местах. И человек не просто должен понимать, что идёт стимуляция, но и распознать конкретное место. Неизвестно, как это сделать.

Такая же проблема и с виртуальным Манхэттеном. Проблема расшифровки. Понятно, что 126 миллионов электродов в мозг не затолкать, но, может быть, мы сумеем стимулировать его по небольшому числу каналов какими-то специальными способами?

Для этого нужно расшифровать весь информационно-аналитический процесс, который идёт в голове, - объясняет Каплан. - Как контактирует компьютер с, допустим, флешкой? Они подогнаны друг к другу, одни и те же инженеры сделали и флешку, и компьютер. А здесь ситуация другая: одни инженеры - высокого класса - сделали мозг, другие - поделки вроде нейроинтерфейса. И вот они пытаются их совместить, хотя не знают ни кодов, ни формата, ни где что хранится… В этом вопросе я скептик.

Мозг гораздо сложнее компьютера. Самый совершенный процессор содержит два миллиарда операционных единиц, а мозг - миллион миллиардов. Это контакты между нервными клетками. Из анатомии известно, что самих клеток 86 миллиардов и на каждую приходится примерно 15 тысяч контактов.

К тому же мозг очень пластичен: вчера здесь проходили импульсы, а сегодня нет. Так что полная виртуальность пока откладывается. Но начало положено: мы уже умеем отличать свет от тени через камеру.

Гибрид живого организма и электронного устройства. Любого пациента с имплантированным кардиостимулятором можно считать киборгом. Но лишь в последние несколько лет учёные нашли способы гибридизировать мозг человека и машину.

Системы "мозг - компьютер"

Развитие нейроинтерфейсов стимулировали в первую очередь работы учёного бразильского происхождения Мигеля Николелиса, опубликованные на рубеже 1990-х и 2000-х годов. Он создал системы управления механической рукой (управляла обезьяна) и восприятия тактильных ощущений. Так в этой области наметились два конкурирующих исследовательских направления.

Сегодня интерфейсы бывают двух типов: инвазивные и неинвазивные. Первые отмечают электрическую активность мозга и передают её на компьютер напрямую, через имплантированные в мозг электроды. Вторые расшифровывают сигналы энцефалограммы.

Есть учёные, вживившие электроды в свой мозг.

ри имплантации электродной матрицы некоторые нервные клетки разрушаются. Но это микроскопические нарушения, некритичные для мозга.

Экспериментальные нейроинтерфейсы

В 1963 году американский кибернетик и нейрофизиолог Грей Уолтер поставил эксперимент, в котором впервые был использован интерфейс "мозг - компьютер". "Пациентам по медицинским показаниям были имплантированы электроды в различные области коры мозга. Им предлагалось переключать слайды проектора, нажимая на кнопку. Обнаружив область коры, ответственную за воспроизведение этого мышечного паттерна, исследователь подключил её напрямую к проектору. Пациенты нажимали на отсоединённую кнопку, но слайды продолжали переключаться: управление осуществлялось непосредственно мозгом, причём даже быстрее, чем человек успевал нажать на кнопку", - пишут О. Левицкая и М. Лебедев в монографии "Интерфейс мозг - компьютер: будущее в настоящем".

Продемонстрировано устройство для управления компьютером с помощью электрических сигналов мозга. После короткого обучения любой человек может, отдавая мысленные приказы, перемещать курсор по экрану.


Прямые интерфейсы «мозг-компьютер» разрабатываются уже далеко не первый год. Их работа основана на слежении за электрической активностью мозга, выявлении характерных состояний и преобразовании их в команды для компьютера. Главная проблема состоит в том, чтобы надежно отождествлять различные состояния мозга и связывать их с желаниями человека.


Конечно, о том, чтобы читать мысли человека, речь не идет. Механизмы абстрактного мышления пока остаются совершенно недоступными для понимания. Поэтому создатели ранних моделей интерфейса «мозг-компьютер» даже не пробовали разбираться в естественных состояниях мозга, связанных с различными намерениями человека. Вместо этого людям предлагалось самим научиться приводить свой мозг в то или иное состояние, удобное для распознавания компьютером. Например, электрическая активность мозга заметно различается в состояниях релаксации и бурной деятельности. Причем изменения оказываются заметными даже в том случае, когда человек лишь мысленно представляет себе эти состояния - главное поотчетливее на них сконцентрироваться. Но, согласитесь, не слишком удобно расслабляться всякий раз, когда нужно подвинуть курсор влево, и наоборот взбадриваться, чтобы сместить его вправо.


Совместно с медицинской школой Шарите (Charité) при берлинском университете Гумбольдта разработана новая система, получившая название «Mental Typewriter» («мысленная машинопись»). Для работы с системой не требуется заниматься столь напряженными медитативными практиками. Вместо этого программа, написанная в институте Фраунгофера, сама изучает электроэнцефалограмму и приспосабливается к индивидуальным особенностям человека.


Вся процедура занимает около 20 минут. За это время человек должен, следуя указаниям компьютера, постараться отдать около 150 мысленных команд, связанных с перемещением курсора по экрану. Для повышения качества распознавания команд рекомендуется представлять при этом движения левой и правой рукой.


Для работы с системой необходимо надеть специальную резиновую шапочку с электродами, которые регистрируют биопотенциалы мозга. Чтобы повысить качество сигналов электроды размещают непосредственно на скальпе с использованием электропроводящей смазки. Соответствующие места на голове приходится выбривать. И все же такой способ связи мозга с компьютером является куда более щадящим, чем вживлением электродов непосредственно в мозг. Конечно, вживление электродов обеспечивает намного более точную передачу сигналов компьютеру, но их применение пока ограничено пациентами, которым такая операция выполняется по медицинским показаниям, например, для предотвращения эпилептических припадков.


Конечно, размещение электродов на скальпе тоже не назовешь особенно приятным, а при длительном использовании они могут вызывать раздражение на коже головы. Но вот парализованным больным или инвалидам с ампутированными руками такое устройство может оказаться весьма полезным.


Но разработчики видят и более широкие перспективы применения своей системы. Например, она может использоваться в качестве средства управления в компьютерных играх. Другое направление – помощь водителю в критических ситуациях на дороге. Интерфейс «мозг-компьютер» может распознать реакцию мозга на опасную ситуацию и передать сигнал тормозной системе быстрее, чем водитель сам нажмет на педаль тормоза.


C учетом таких планов не должно удивлять, что своей ближайшей задачей разработчики считают такое усовершенствование системы, чтобы электроды не требовали прямого контакта со скальпом. Неизбежное при этом ослабление регистрируемых сигналов можно попробовать скомпенсировать за счет развития методов их обработки. Сейчас эти методы развиваются очень быстро и даже специалисты, традиционно работающие с имплантированными электродами, признают, что в области неинвазивных (нетравматичных) методов анализа работы мозга сейчас наблюдается очень быстрый прогресс. Свидетельством тому новая немецкая разработка «mental typewriter».

Американская корпорация Facebook впервые официально рассказала о методах, которые разрабатывает в области управления компьютером силой мысли. С докладом выступила Регина Дуган, возглавляющая в компании секретный отдел Building 8, занимающийся такими исследованиями. Идея в том, чтобы «записывать мысли напрямую» без применения периферийных устройств, пояснила она, выступая на конференции разработчиков под F8, организованной Facebook в Сан-Хосе (штат Калифорния). «Это кажется нереальным, но такое, вероятно, будет возможно раньше, чем вы предполагаете», - выразила уверенность Дуган.

По словам руководителя Building 8, компания надеется вскоре выпустить систему, позволяющую записывать силой мысли 100 слов в минуту, что в пять раз быстрее скорости набора текста на смартфоне. При этом Facebook стремится к тому, чтобы работа устройства не требовала вживления каких-либо элементов в тело человека. Во время выступления представитель социальной сети показала видеозапись, где парализованная женщина набирает текст силой мысли с помощью специального импланта. Глава Building 8 объяснила, что пока система позволяет набирать восемь слов в минуту.

В Facebook изучают возможность следить за активностью речевых центров в мозге молчащего человека и передавать информацию на компьютер с помощью особых датчиков. Дуган отметила, что компания не стремится создать систему, которая бы «расшифровывала случайные мысли людей». «Можно представить себе это так: вы много фотографируете, но не все снимки выкладываете. Также у вас много мыслей, но делитесь вы лишь некоторыми», - объяснила она.

В 2015 году основатель Facebook Марк Цукерберг (№5 в глобальном рейтинге миллиардеров по версии Forbes, состояние $56 млрд) утверждал, что будущее коммуникации вполне может стать «телепатия». «Однажды я верю, что мы сможем отправлять полностью оформленные мысли друг другу напрямую, используя технологии», - говорил он. «Вы просто сможете придумать что-то, и ваши друзья тут же смогут испытать это вместе с вами», - отмечал предприниматель.

Руководитель Building 8 рассказала также, что Facebook занимается также технологиями, которые позволили бы глухим воспринимать звуки. Компания тестирует метод преобразования звука в вибрацию и иные сигналы, которые пользователь ощущает кожей – «сложной системой нервов, которые передают данные в мозг». В ходе презентации Дуган показала запись, на которой мужчина, лишенный возможности говорить и видеть, общается при помощи устройств от Facebook.

Глава секретного подразделения Facebook ранее руководила Управлением перспективных исследовательских проектов министерства обороны США (DARPA). До апреля 2016 года она также управляла подразделением «Инновационных технологий и проектов» (ATAP) в Google, занимающимся разработкой инновационных технологий, пока ее не переманил основатель Facebook. В Google Дуган, в частности, отвечала за создание технологии построения 3D-модели пространства с помощью смартфона (проект Tango).

Несмотря на то, что управление устройствами силой мысли не является конечной целью таких устройств, как Muse, в силах диадемы - показать вам, что происходит внутри вашей головы.

«Технология просто бесподобна», - говорит Гартен. - «Одна из самых желанных вещей для людей - усилить их мысленные способности, чтобы показывать действительно выдающиеся результаты везде — на работе и дома. Над этим стоит работать».

Muse - всего лишь одно из несколько устройств на растущем рынке BCI-ориентированных штук. Кошачьи ушки Brainwave Cat Ears от Necomimi (70 долларов) шевелятся, когда «шевелятся» ваши мозги. А на выставке CES 2013 невролог и бывший инженер-программист Руджеро Скорциони выиграл Хакатон от AT&T с приложением Goog Times, которое позволяло сбрасывать телефонный звонок, пока вы заняты, с помощью этих самых ушек.

«Я полагаю, что это лишь одна из потенциальных технологий управления силой мысли», - заявил Скорциони. - «Все они станут неотъемлемой частью нашей жизни, и возможно когда-нибудь мы будем полностью зависеть от них».

Good Times сообщается с Brainwave Cat Ears, читая уровень активности вашего мозга. iOS-приложение использует эти показатели, чтобы решить, стоит ли принять звонок или отправить абонента звонить позже.

«Если вы психически заняты, сигнал не станет выше», - говорит Скорциони. - «Он просто изменит тип электрической активности. Вопрос не в выявлении порога, а в анализе данных и фиксировании момента, когда мозг загружен под завязку».

Как Muse, так и Good Times позволяют вам работать со смартфоном на базовом уровне, но не позволяют выполнять более сложные и комплексные задачи. Вы пока не можете опубликовать что-либо в Twitter, просто подумав об этом, или управлять персонажем игры, отдавая команды силой мысли.

«Как правило, Muse работает с вещами, которые цикличны по своей сути и могут повторяться туда-сюда».

За пределами прикосновения


Хотя исследования BCI продолжаются, остается непонятным, действительно ли они обещают полностью бесконтактное мобильное управление: технология BCI не может на самом деле обрабатывать и интерпретировать ваши мысли, а лишь измеряет электрическую активность, происходящую в вашей голове.

«BCI не читает мысли», - говорит Хасан Аяз, научный сотрудник сферы биомедицинской инженерии в Университете Дрексель в Филадельфии. - «Это просто захват того, чем увлечен пользователь. Оно не вмешивается в индивидуальное мышление, что очень хорошо для частной безопасности».

Сегодня BCI используется в основном в клинических целях, чтобы помочь пользователям с ограниченными физическими возможностями, мышечными расстройствами и тем, кто не может в полной мере использовать свои конечности. Как говорит Аяз, исследования BCI начались еще 23 года назад, а их целью должно было упрощение коммуникации клинических больных.

«Несмотря на то, что BCI находится на ранней стадии своего развития и постоянно дорабатывается, она является единственным вариантом для некоторых», - говорит Аяз. - «Целевая аудитория представлена, по большей части, клиническими пациентами, поэтому все, что может улучшить их взаимодействие с окружающим миром, важно и полезно».

Это именно тот принцип создания новых путей взаимодействия с мобильными устройствами, которым заинтересовалась Samsung. В сотрудничестве с Техасским университетом в Далласе, производитель смартфонов создает покрытие, усеянное датчиками ЭЭГ, которые позволят пользователям управлять планшетом Galaxy силой мысли. Исследователи выяснили, что пользователи вполне могут запускать приложения и делать выбор, концентрируясь на иконке.

«Несколько лет назад маленькая клавиатура была единственным методом управления телефоном, однако в настоящее время пользователь вправе использовать голос, жесты, прикосновения и движения глаз для работы», - рассказал Инсу Ким, один из главных разработчиков Samsung. - «Добавление еще нескольких способов ввода обеспечит нас более богатыми возможностями взаимодействия с мобильными устройствами».

Борьба со стеснением


Серьезной проблемой в развитии устройств, управляемых силой мысли, остается размещение и внешний вид датчиков ЭЭГ. По мнению Скорциони, преимущества, которые предоставляют эти устройства, носимые в реальной жизни на постоянной основе, недостаточны для того, чтобы убедить большинство людей носить гарнитуру.

«Наши исследования показали, что не многие люди готовы носить гарнитуру», - говорит Скорциони. - «Они получат не так много преимуществ пока. Есть ряд ограничений перед тем, как вы запросто скажете «что ж, вы сможете управлять устройством силой мысли». А зачем сейчас надевать эти диадемы и датчики?»

InteraXon обошла это препятствие с гарнитурой Muse, поскольку ее можно просто поместить в шапку или кепку, успешно спрятав. В то же время, другие носители BCI-устройств будут в авангарде, подобно тем, кто надевает . «На голове оно смотрится стильно и вызывающе. Но при этом оно должно демонстрировать феноменальные возможности, которые позволяет технология», - комментирует Гартен.

Есть и проблема в разработке сухих датчиков ЭЭГ до такой степени, чтобы их можно было легко использовать всем потребителям. Обычный ЭЭГ-датчик, широко распространенный в клинических условиях, требует слоя жидкости между датчиком и кожей головы, чтобы усилить сигнал. Samsung изучает возможности использования сухих датчиков и надеется в один прекрасный день создать какую-нибудь кепку с BCI-технологией, чтобы ее можно было носить постоянно.

«Сухие датчики практичны в повседневном использовании, поскольку вам не нужно использовать гель каждый раз. Если мы сможем достичь успехов в улучшении мощности сигналов или машинном оборудовании, мы сможем сделать и более хитроумные приспособления».

Думая о будущем


Пройдет совсем немного времени и управляемые мозгом интерфейсы станут частью повседневной жизни людей. Гартен полагает, что при всем этом технологии могут трансформироваться в другие формы, более соответствующие ежедневным занятиям людей.

«Может появиться другое устройство, отличное от очков или элемента мобильного телефона… вещь, которая сидит за ухом и держится вполне естественно. Может возникнуть новая технология, которая станет основным звеном наших ».

Сколько пройдет лет, прежде чем BCI станет мэйнстримом? Все зависит не только от темпа развития инноваций, но и от признания пользователей. Гартен говорит, что пройдет 20-25 лет при нынешних обстоятельствах, прежде чем технология станет такой же популярной, как сенсорные дисплеи сегодня.