Метод эквивалентных преобразований онлайн. Расчет электрических цепей постоянного тока методом эквивалентных преобразований. Так как R4, R5, Rб подключены параллельно друг к другу, то

Довольно часто при анализе линейных резистивных цепей приходится применять метод упрощения. Этот метод состоит в том, что участки электрической цепи заменяются более простыми по структуре, при этом токи и напряжения в не преобразованной части цепи не должны изменяться. При этом необходимо уметь преобразовывать последовательно и параллельно соединенные резистивные элементы, а также соединения треугольником и звездой.

2.1 Последовательное соединение резистивных элементов .

Ток во всех последовательно соединенных элементах один и тот же. Для схемы на рис. 2.1 можно записать

U = (R1 + R2 +...+ RN)I = R Э I, (2.1)

где R Э – эквивалентное сопротивление. .

Как видно из формулы, оно определяется как сумма всех последовательно включенных сопротивлений.

R Э = R1+R2+…+RN. (2.2)

2.2 Параллельное соединение резистивных элементов.

В схеме (рис. 2.2) ко всем элементам приложено одно и то же напряжение U, а ток разветвляется (I = I 1 + I 2 +...+ I n), поэтому можно записать:

(2.3)

Вводя понятие проводимости G=1/R, получим:

I = U(G 1 + G 2 +...+ G n) = UG э. (2.4)

Таким образом, эквивалентная проводимость G э параллельно включенных резистивных элементов равна сумме их проводимостей. В частном случае, если параллельно соединены два резистора, их эквивалентное сопротивление

2.3. Соединения треугольником и звездой

Во многих случаях оказывается целесообразным также преобразование сопротивлений, соединенных треугольником (рис.2.3) и эквивалентной звездой (рис.2.4).

Рис. 2.3 Рис. 2.4

Сопротивления лучей эквивалентной звезды определяют по формулам:

(2.8)

(2.9)

(2.10)

где R 1 , R 2 , R 3 – сопротивления лучей эквивалентной звезды сопротивлений, а R 12 , R 23 , R 31 – сопротивления сторон эквивалентного треугольника сопротивлений.

При замене звезды сопротивлений эквивалентным треугольником сопротивлений, сопротивления сторон треугольника рассчитывают по следующим формулам:

(2.11)

(2.12)

(2.13)

2.4 Примеры решения задач

2.1. Для электрической цепи постоянного тока с параллельным соединением резисторов R 1 , R 2 , R 3 (рис.2.5)определить ток I в неразветвленной её части и токи в отдельных ветвях: I 1 , I 2 , I 3 . Сопротивления резисторов: R 1 =5Ом, R 2 =10Ом, R 3 =15Ом, напряжение питающей сети U =110В.

Рис. 2.5

Решение. Эквивалентную проводимость всей цепи определим следующим образом:

Ток в неразветвленной части электрической цепи:

Токи в ветвях схемы:

2.2. Для условий задачи 2.1 ток в неразветвленной части цепи I =22A. Определить токи I 1 , I 2 , I 3 в ветвях резисторов R 1 , R 2 , R 3 .



Решение. Проводимости отдельных участков электрической цепи:

.

Эквивалентная проводимость цепи:

Напряжение между узловыми точками:

Токи в ветвях резисторов:

2.3. Для цепи постоянного тока, приведенной на рис.2.6, определить общий ток I и токи I 1 , I 2 , I 3 , I 4 в ветвях резисторов R 1 R 4 . к цепи подведено напряжение U =240В, сопротивления резисторов R 1 =20Ом, R 2 =15Ом, R 3 =10Ом, R 4 =5Ом.

Решение. Эквивалентное сопротивление участка электрической цепи с резисторами R 1 и R 2 :

Эквивалентное сопротивление участка цепи с резисторами R 3 и R 4 :

Общее сопротивление цепи:

Общий ток в цепи:

Рис.2.6

Падение напряжения на параллельных участках цепи:

,

Токи в ветвях соответствующих резисторов:

2.4. Соединение элементов электрической цепи по схемам «звезда» и «треугольник»

В электротехнических и электронных устройствах элементы цепи соединяются по мостовой схеме (рис. 1.12). Сопротивления R 12 , R 13 , R 24 , R 34 включены в плечи моста, в диагональ 1–4 включен источник питания с ЭДС Е, другая диагональ 3–4 называется измерительной диагональю моста.

Рис. 1.12 Рис. 1.13

В мостовой схеме сопротивления R 13 , R 12 , R 23 и R 24 , R 34 , R 23 соединены по схеме «треугольник». Эквивалентное сопротивление этой схемы можно определить только после замены одного из треугольников, например треугольника R 24 R 34 R 23 звездой R 2 R 3 R 4 (рис. 1.13). Такая замена будет эквивалентной, если она не вызовет изменения токов всех остальных элементов цепи. Для этого величины сопротивлений звезды должны рассчитываться по следующим соотношениям:

; ; .

Для замены схемы «звезда» эквивалентным треугольником необходимо рассчитать сопротивления треугольника:

; ; .

После проведенных преобразований (рис. 1.13) можно определить величину эквивалентного сопротивления мостовой схемы (рис. 1.12)

.


2.5. Задачи для самостоятельного решения

2.4. Для электрической цепи постоянного тока (рис.2.7) определить токи I 1 , I 2 , I 3 при напряжении U =240В и сопротивление резистора R 1 . Сопротивление резисторов: R 2 =10Ом, R 3 =15Ом. Мощность потребляемая цепью, измеряемая ваттметром W , равна 7,2кВт.

Рис.2.7

2.5. Для разветвленной электрической цепи постоянного тока, представляемой на рис.2.7, определить токи I 1 , I 2 , I 3 при напряжении питающей сети U =80В. Сопротивление резисторов: R 1 =10Ом, R 2 =15Ом, R 3 =10Ом.

2.6. Контрольное задание

Определить эквивалентное сопротивление R экв электрической цепи постоянного тока (рис.2.8) и распределение токов в ветвях. Положение выключателя S 1 , величины сопротивлений резисторов R 1 R 12 и питающего напряжения U для каждого из вариантов задания приведены в таблице 2.1.

Рис. 2.8

Таблица 2.1

Величина Вариант задания
R 1 , Ом
R 2 , Ом
R 3 , Ом
R 4 , Ом
R 5 , Ом
R 6 , Ом
R 7 , Ом
R 8 , Ом
R 9 , Ом
R 10 , Ом
R 11 , Ом
R 12 , Ом
U , В
S 1

Продолжение таблицы 2.1

Величина Вариант задания
R 1 , Ом
R 2 , Ом
R 3 , Ом
R 4 , Ом
R 5 , Ом
R 6 , Ом
R 7 , Ом
R 8 , Ом
R 9 , Ом
R 10 , Ом
R 11 , Ом
R 12 , Ом
U , В
S 1

Первый закон Кирхгофа

В любом узле электрической цепи алгебраическая сумма токов равна нулю

Второй закон Кирхгофа

В любом замкнутом контуре электрической цепи алгебраическая сумма ЭДС равна алгебраической сумме падений напряжений на всех его участках

Расчет электрической цепи с использованием законов Кирхгофа. Баланс мощностей

Опираясь на законы Ома и Кирхгофа можно рассчитать абсолютно любую электрическую цепь. Другие методы расчета цепей разработаны исключительно для уменьшения объема требуемых вычислений.

Последовательность действий:

Произвольно назначают направления токов в ветвях.

Произвольно назначают направления обхода контуров.

Записывают У - 1 уравнение по I закону Кирхгофа. (У - число узлов в цепи).

Записывают В - У + 1 уравнение по II закону Кирхгофа. (В - число ветвей в цепи).

Решают систему уравнений относительно токов и уточняют величины падений напряжения на элементах.

Примечания:

При составлении уравнений слагаемые берут со знаком "+" в случае, если направление обхода контура совпадает с направлением падения напряжения, тока или ЭДС. В противном случае со знаком "-".

Если при решении системы уравнений будут получены отрицательные токи, то выбранное направление не совпадает с реальным.

Следует выбирать те контуры, в которых меньше всего элементов.

Правильность расчетов можно проверить, составив баланс мощностей . В электрической цепи сумма мощностей источников питания равна сумме мощностей потребителей:

Следует помнить, что тот или иной источник схемы может не генерировать энергию, а потреблять ее (процесс зарядки аккумуляторов). В таком случае направление тока, протекающего по участку с этим источником, встречное направлению ЭДС. Источники в таком режиме должны войти в баланс мощностей со знаком "-".

Метод контурных токов

Один из методов анализа электрической цепи является метод контурных токов . Основой для него служит второй закон Кирхгофа.

Действительный ток в определенной ветви определяется алгебраической суммой контурных токов, в которую эта ветвь входит. Нахождение действительных токов и есть первоочередная задача метода контурных токов.

1. Произвольно выбираем направления действительных токов I1-I6.

2. Выделяем три контура, а затем указываем направление контурных токов I11,I22,I33. Мы выберем направление по часовой стрелке.

3. Определяем собственные сопротивления контуров. Для этого складываем сопротивления в каждом контуре.

R11=R1+R4+R5=10+25+30= 65 Ом

R22=R2+R4+R6=15+25+35 = 75 Ом

R33=R3+R5+R6=20+30+35= 85 Ом

Затем определяем общие сопротивления, общие сопротивления легко обнаружить, они принадлежат сразу нескольким контурам, например сопротивление R4 принадлежит контуру 1 и контуру 2. Поэтому для удобства обозначим такие сопротивления номерами контуров к которым они принадлежат.

R12=R21=R4=25 Ом

R23=R32=R6=35 Ом

R31=R13=R5=30 Ом

4. Приступаем к основному этапу – составлению системы уравнений контурных токов. В левой части уравнений входят падения напряжений в контуре, а в правой ЭДС источников данного контура.

Так как контура у нас три, следовательно, система будет состоять из трех уравнений. Для первого контура уравнение будет выглядеть следующим образом:

Ток первого контура I11, умножаем на собственное сопротивление R11 этого же контура, а затем вычитаем ток I22, помноженный на общее сопротивление первого и второго контуров R21 и ток I33, помноженный на общее сопротивление первого и третьего контура R31. Данное выражение будет равняться ЭДС E1 этого контура. Значение ЭДС берем со знаком плюс, так как направление обхода (по часовой стрелке) совпадает с направление ЭДС, в противном случае нужно было бы брать со знаком минус.

Те же действия проделываем с двумя другими контурами и в итоге получаем систему:

В полученную систему подставляем уже известные значения сопротивлений и решаем её любым известным способом.

5. Последним этапом находим действительные токи, для этого нужно записать для них выражения.

Контурный ток равен действительному току, который принадлежит только этому контуру . То есть другими словами, если ток протекает только в одном контуре, то он равен контурному.

Но, нужно учитывать направление обхода, например, в нашем случае ток I2 не совпадает с направлением, поэтому берем его со знаком минус.

Токи, протекающие через общие сопротивления определяем как алгебраическую сумму контурных, учитывая направление обхода.

Например, через резистор R4 протекает ток I4, его направление совпадает с направлением обхода первого контура и противоположно направлению второго контура. Значит, для него выражение будет выглядеть

А для остальных

Метод эквивалентных преобразований

Некоторые сложные электрические цепи содержат несколько приемников, но только один источник. Такие цепи могут быть рассчитаны методом эквивалентных преобразований. В основе этого метода лежит возможность преобразования двух последовательно соединенных или параллельно соединенных резисторов R1 и R2 к одному эквивалентному Rэкв.Эквивалентные преобразования в электрической цепи Для определения эквивалентного сопротивления Rэкв следует воспользоваться основными законами электрических цепей. Условием эквивалентного преобразования должно быть сохранение тока и напряжения рассматриваемого участка: I = Iэкв, U = Uэкв. Для исходного участка цепи по II закону Кирхгофа с учетом закона Ома для каждого из двух последовательно соединенных элементов: U = U1 + U2 = R1I + R2I = (R1 + R2)I . Для эквивалентного элемента по закону Ома: Uэкв = Rэкв* Iэкв. С учетом условий эквивалентного преобразования U = Uэкв = (R1 + R2)I = (R1 + R2)Iэкв = Rэкв* Iэкв. Отсюда Rэкв = (R1 + R2). Это соотношение определяет сопротивление элемента, эквивалентного двум последовательно соединенным элементам. Для двух параллельно соединенных элементов по I закону Кирхгофа с учетом закона Ома для каждого из двух параллельно соединенных элементов: I = I1 + I2 = U/R1 + U/R2 = U(1/R1 + 1/R2). Для эквивалентного элемента по закону Ома: Iэкв = Uэкв/Rэкв. С учетом условий эквивалентного преобразования I = Iэкв = U(1/R1 + 1/R2) = Uэкв(1/R1 + 1/R2) = Uэкв/Rэкв, отсюда 1/Rэкв = 1/R1 + 1/R2 (1.59) или Rэкв = (R1 R2)/(R1 + R2). Это соотношение определяет сопротивление элемента, эквивалентного двум параллельно соединенным элементам. Соотношения позволяют проводить поэтапные эквивалентные преобразования сложной электрической цепи с несколькими приемниками и осуществлять расчет такой цепи. При заданных параметрах всех элементов цепи (E, R1, R2, R3) расчет может быть проведен методом эквивалентных преобразований следующим образом. На первом этапе преобразования два параллельно соединенных резистора R1 и R2 заменяются одним эквивалентным с сопротивлением Rэкв12, равным Rэкв12 = (R1* R2)/(R1 + R2). (1.61) При этом образуется эквивалентная цепь, в которой содержатся два резистора Rэкв12 и R3, соединенные последовательно. Напряжение Uab в эквивалент- ной цепи соответствует напряжению Uab в исходной цепи, а ток в эквивалент- ной цепи соответствует току в неразветвленной части исходной цепи. На втором этапе преобразования два последовательно соединенных резистора Rэкв12 и R2 заменяются одним эквивалентным с сопротивлением Rэкв123, равным Rэкв123 = Rэкв12 + R3 . При этом образуется простая эквивалентная цепь, в которой содержится один резистор Rэкв123. Ток в этой цепи соответствует току в неразветвленной части исходной цепи и определяется по закону Ома: I = Uac/ Rэкв123 = E/ Rэкв123 . Дальнейший расчет ведется по закону Ома, следуя по этапам эквивалентных преобразований в обратном порядке. Для эквивалентной цепи: Uab = I* Rэкв12 ; Ubc = I* R3 . Для исходной цепи: I1 = Uab/R1 ; I2 = Uab/R2 .Таким образом, описанный метод эквивалентных преобразований позволяет рассчитать сложную электрическую цепь, не сводя задачу к решению системы уравнений, а путем последовательных вычислений. Однако этот метод применим к цепям, содержащим лишь один источник ЭДС

2. Метод преобразования (свертки) схемы

Если схема электрической цепи содержит только один источник энергии (E или J ), то пассивная часть схемы может быть преобразована (свернута) к одному эквивалентному эле-менту R Э (рис. 7).

Свертка схемы начинается с самых удаленных от источника ветвей, про-водится в не-сколько этапов до достижения полной свертки. После полной свертки схемы определяется ток источника по закону Ома: . Токи в ос-тальных элементах исходной схемы находятся в процессе об-ратной развертки схемы. Такой метод расчета токов получил название метода последова-тельного преобразования (свертки) схемы.
При применении данного метода возможны следующие виды преобразо-ваний.
1) Последовательное преобразование заключается в замене нескольких элементов, включенных последовательно, одним эквивалентным (рис. 8). Несложно доказать, что при этом справедливы следующие соотношения:
и


2) Параллельное преобразование состоит в замене нескольких элемен-тов, вклю-чен-ных параллельно, одним эквивалентным (рис. 9). Несложно доказать, что при этом справедливы следующие соотношения:
и
Для двух элементов: и


3) Взаимное преобразование схем звезда -треугольник (рис. 10) возни-кает при свертке сложных схем.
Условием эквивалентности двух схем являются равенства для них токов (I 1, I 2, I 3), на-пряжений (U 12, U 23, U 31) и входных сопротивлений (R 12, R 23, R 31) и соответственно входных проводимостей (G 12, G 23, G 31).
Приравняем входные сопротивления для обеих схем со стороны двух произвольных ветвей при отключенной третей (рис. 10):

(1)
(2)
(3)

Сложим почленно уравнения (1) и (3) и вычтем из суммы уравнение (2), получим:
, по аналогии: , .
Приравняем входные проводимости для обеих схем со стороны произ-вольной вер-шины и двух других вершин, замкнутых накоротко (рис. 11):
(4)
(5)
(6)
Сложим почленно уравнения (4) и (5) и вычтем уравнение (6), получим:
, по аналогии: , .
В последних уравнениях заменим проводимости на соответствующие им сопротивле-ния , получим:
; ; .


При наличии полной симметрии соотношение между параметрами экви-валентных схем составляет:.
4) Замена параллельных ветвей эквивалентной ветвью (рис. 12) осу-ществляется со-гласно теореме об эквивалентном генераторе.

Закон Ома – падение напряжения на элементе равно произведению величины сопротивления этого элемента на величину тока, протекающего через него.

Первый закон Кирхгофа – сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла.

Второй закон Кирхгофа – в замкнутом контуре алгебраическая сумма напряжений источников электрической энергии равна алгебраической сумме падений напряжений на элементах контура. При обходе контура в произвольно выбранном направлении значения напряжений берутся с плюсом, если направление обхода контура и направления напряжений совпадают и берутся с минусом, если этого совпадения нет.

Расчет методом эквивалентного преобразования

Этот метод применяется для не очень сложных пассивных электрических цепей, такие цепи встречаются довольно часто, и поэтому этот метод находит широкое применение. Основная идея метода состоит в том, что электрическая цепь последовательно преобразуется ("сворачивается") до одного эквивалентного элемента, как это показано на рис. 1.13, и определяется входной ток. Затем осуществляется постепенное возвращение к исходной схеме ("разворачивание") с последовательным определением токов и напряжений.

Последовательность расчёта:

1. Расставляются условно–положительные направления токов и напряжений.

2. Поэтапно эквивалентно преобразуются участки цепи. При этом на каждом этапе во вновь полученной после преобразования схеме расставляются токи и напряжения в соответствии с п. 1.

3. В результате эквивалентного преобразования определяется величина эквивалентного сопротивления цепи.

4. Определяется входной ток цепи с помощью закона Ома.

5. Поэтапно возвращаясь к исходной схеме, последовательно находятся все токи и напряжения.

Рассмотрим этот метод на примере (рис. 1.15). В исходной схеме расставляем условно–положительные направления токов в ветвях и напряжений на элементах. Нетрудно согласиться, что под действием источника E с указанной полярностью направление токов и напряжений такое, какое показано стрелками. Для удобства дальнейшего пояснения метода, обозначим на схеме узлы а и б. При обычном расчете это можно не делать.

Затем, объединяя все последовательно соединенные элементы, завершаем эквивалентное преобразование схемы (рис. 1.15, в):

В последней схеме (рис. 1.15, в) находим ток I 1:

Теперь возвращаемся к предыдущей схеме (рис. 1.15, б). Видим, что найдCенный ток I 1 протекает через R 1 , R 2,3 , R 4 и создает на них падение напряжения. Найдем эти напряжения:

.Возвращаясь к исходной схеме (рис. 1.15, а), видим, что найденное напряжениеU аб прикладывается к элементам R 2 и R 3 .

Значит, можем записать, чтоU 2 = U 3 = U а,б

Токи в этих элементах находят из совершенно очевидных соотношений:

Итак, схема рассчитана.

расчет с помощью законов кирхгофа

Этот метод наиболее универсален и применяется для расчета любых цепей. при расчете этим методом первоначально определяются токи в ветвях, а затем напряжения на всех элементах. токи находятся из уравнений, полученных с помощью законов кирхгофа. так как в каждой ветви цепи протекает свой ток, то число исходных уравнений должно равняться числу ветвей цепи. число ветвей принято обозначать через n . часть этих уравнений записываются по первому закону кирхгофа, а часть – по второму закону кирхгофа. все полученные уравнения должны быть независимыми. это значит, чтобы не было таких уравнений, которые могут быть получены путем перестановок членов в уже имеющемся уравнении или путем арифметических действий между исходными уравнениями. при составлении уравнений используются понятия независимых и зависимых узлов и контуров. рассмотрим эти понятия.

независимым узлом называется узел, в который входит хотя бы одна ветвь, не входящая в другие узлы. если число узлов обозначим через к , то число независимых узлов равно (к –1). на схеме (рис. 1.16) из двух узлов только один независим.

независимым контуром называется контур, который отличается от других контуров хотя бы одной ветвью, не входящей в другие контура. в противном случае такой контур называется зависимым .

если число ветвей цепи равно n , то число независимых контуров равно [n – (к –1)].

в схеме (рис. 1.16) всего три контура, но только два независимых контура, а третий – зависим. выделять независимые контура можно произвольно, т. е. в качестве независимых контуров можно выбрать при первом расчете одни, а при втором расчете (повторном) – другие, которые раньше были зависимыми. результаты расчета будут одинаковыми.

если по первому закону кирхгофа составить уравнения для (к –1) независимых узлов, а по второму закону кирхгофа составить уравнения для [n – (к –1)] независимых контуров, то общее число уравнений будет равно:

(K –1) + [n – (K –1)] = n .

Это означает, что для расчёта имеется необходимое число уравнений.

Последовательность расчёта:

1. Расставляем условно – положительные направления токов и напряжений.

2. Определяем число неизвестных токов, которое равно числу ветвей (n ).

3. Выбираем независимые узлы и независимые контура.

4. С помощью первого закона Кирхгофа составляем (К –1) уравнений для независимых узлов.

5. С помощью второго закона Кирхгофа составляем [n – (К –1)] уравнений для независимых контуров. При этом напряжения на элементах выражаются через токи, протекающие через них.

6. Решаем составленную систему уравнений и определяем токи в ветвях. При получении отрицательных значений для некоторых токов, необходимо их направления в схеме изменить на противоположные, которые и являются истинными.

7. Определяем падения напряжений на всех элементах схемы.

Рассмотрим последовательность расчета на примере схемы, приведенной на рис. 1.16. Учитывая направление источника E , расставляем условно–положительные направления токов и напряжений. В схеме три ветви, поэтому нам необходимо составить три уравнения. В схеме два узла, следовательно, из них только один независимый. В качестве независимого узла выберем узел 1. Для него запишем уравнение по первому закону Кирхгофа:

I 1 = I 2 + I 3 .

Далее необходимо составить два уравнения по второму закону Кирхгофа. В схеме всего три контура, но независимых только два. В качестве независимых контуров выберем контур из элементов E R 1 –R 2 и контур из элементов R 2 – R 3 . Обходя эти два контура по направлению движения часовой стрелки, записываем следующие два уравнения:

E = I 1 ,R 1 + I 2 R 2 ,

0 = – I 2 R 2 + I 3 R 3 .

Решаем полученные три уравнения и определяем токи в ветвях. Затем через найденные токи по закону Ома определяем падения напряжений на всех элементах цепи.

расчет методом контурных токов

Сложные схемы характеризуются наличием значительного числа ветвей. В случае применения предыдущего метода это приводит к необходимости решать систему из значительного числа уравнений.

Метод контурных токов позволяет заметно уменьшить число исходных уравнений. При расчёте методом контурных токов используются понятия независимого контура и зависимого контура, которые нам уже известны. Кроме них в этом методе используются ещё следующие понятия:

собственный элемент контура – элемент, относящийся только к одному контуру;

общий элемент контура – элемент, относящийся к двум и более контурам цепи.

Обозначаем, как и раньше, через К число узлов, а через n число ветвей цепи. Тогда число независимых контуров цепи определяется по уже известной формуле [n – (К –1)].

Метод основывается на предположении, что в каждом независимом контуре течёт собственный контурный ток (рис. 1.17), и вначале находят контурные токи в независимых контурах. Токи в ветвях цепи определяют через контурные токи. При этом исходят из того, что в собственных элементах контура токи совпадают с контурным током данного контура, а в общих элементах ток равен алгебраической сумме контурных токов тех контуров, к которым принадлежит данный элемент.

Последовательность расчёта:

1. Определяется число ветвей (n ) и число узлов (К ) цепи. Находится число независимых контуров [n – (К –1)].

2. Выбирается [n – (К –1)] не зависимых контура.

3. Выбирается условно–положительное направление контурных токов в каждом из независимых контуров (обычно показывается стрелкой).

4. Для каждого из независимых контуров составляется уравнение по второму закону Кирхгофа. При этом падение напряжения на собственных элементах определяется как произведение контурного тока на величину сопротивления, а на общих элементах – как произведение алгебраической суммы всех контурных токов, протекающих через данный элемент, на величину его сопротивления. Обход контура производится, как правило, в направлении собственного контурного тока.

5. Решается система из [n – (К –1)] уравнений и находятся контурные токи.

6. Токи в ветвях схемы находятся следующим образом:

– в собственных элементах контура ток равен контурному току;

– в общих элементах контура ток равен алгебраической сумме токов, протекающих через данный элемент.

Рассмотрим в общем виде применение этого метода для расчёта схемы, приведенной на рис. 1.17.

В этой схеме три ветви и два узла, следовательно, в ней только два независимых контура. Выбираем эти контура и показываем в них направления (произвольно) контурных токов I к1 и I к2 . Составляем два уравнения по второму закону Кирхгофа:

.

Решив эту систему уравнений, находим контурные токи I к 1 и I к 2 . Затем определяем токи в ветвях:

I 1 = I к 1 , I 3 = I к 2 , I 2 = I к 1 – I к 2 .

РАСЧЕТ МЕТОДОМ НАЛОЖЕНИЯ

Метод применяется для расчета цепей, содержащих несколько (два и более) источников электрической энергии. Подчеркнем, что этот метод применим для расчета только линейных цепей. Метод основывается на том положении, что в каждой ветви цепи ток равен алгебраической сумме токов, создаваемых каждым источником. Следовательно, необходимо определить токи, создаваемые каждым источником в отдельности, а затем их просуммировать с учетом направлений.

Последовательность расчета:

1. В электрической цепи оставляют только один источник ЭДС. Вместо исключенного источника ЭДС ставится или резистор, величина которого равна величине внутреннего сопротивления источника ЭДС, или перемычка, если внутреннее сопротивление источника равно нулю.

2. Определяются токи во всех ветвях, создаваемые этим источником ЭДС.

3. Оставляется в цепи следующий источник ЭДС, а с остальными поступают аналогично тому, как сказано в п. 1.

4. Определяются токи в цепи, создаваемые вторым источником ЭДС.

5. Аналогично поступают с оставшимися источниками.

6. Истинные токи в ветвях цепи определяются как алгебраическая сумма токов в этих ветвях, созданных каждым из источников.

Рассчитаем цепь, изображенную на рис. 1.18, методом наложения. Будем считать, что внутренние сопротивления источников ЭДС равны нулю.

В начале оставляем источник E 1 , а источник E 2 убирается и в место него ставится перемычка (рис. 1.18, б). В полученной схеме находим токи методом эквивалентного преобразования:


Затем оставляем только источник E 2 , а вместо E 1 ставится перемычка (рис. 1.18, в). В полученной схеме определяем токи в ветвях также методом эквивалентного преобразования:

Находим действительные токи в исходной схеме (рис. 1.18, а) алгебраическим суммированием найденных токов.

Ток I 1 равен разности тока I 11 и тока I 12:

I 1 = I 11 – I 12 .

Ток I 2 равен сумме токов I 21 и I 22 , т. к. они совпадают по направлению:

I 2 = I 21 + I 22 .

Ток I 3 равен разности тока I 32 и тока I 31:

I 3 = I 32 – I 31 .

Электрическая цепь с последовательным соединением сопротив-лений (рисунок 1.3, а) заменяется при этом цепью с одним эквива-лентным сопротивлением Rэк (рисунок 1.3, б), равным сумме всех сопротивлений цепи:

Rэк = R1 + R2 +…+ Rn = , (1.5)

где R1, R2 … Rn - сопротивления отдельных участков цепи.


Рисунок 1.3 Электрическая цепь с последовательным соединением сопротивлений

При этом ток I в электрической цепи сохраняет неизменным свое значение, все сопротивления обтекаются одним и тем же током. Напряжения (падения напряжения) на сопротивлениях при их последовательном соединении распределяются пропорционально сопротивлениям отдельных участков:

U1/R1 = U2/R2 = … = Un/Rn.

При параллельном соединении сопротивлений все сопро-тивления находятся под одним и тем же напряжением U (рисунок 1.4). Электрическую цепь, состоящую из параллельно соединенных сопротивлений, целесообразно заменить цепью с эквивалентным сопротивлением Rэк, которое опре-деляется из выражения

где - сумма величин, обратных сопротивлениям участков параллель-ных ветвей электрической цепи;

Rj - сопротивление параллельного участка цепи;

n - число параллельных ветвей цепи.

Рисунок 1.4 Электрическая цепь с параллельным соединением сопротивлений

Эквивалентное сопротивление участка цепи, состоящего из одинаковых парал-лельно соединенных сопротивлений, равно Rэк = Rj/n. При параллельном соединении двух сопротивлений R1 и R2 эквивалентное сопротивление определяется как

а токи распределяются обратно пропорционально этим сопротивлениям, при этом

U = R1I1 = R2I2 = … = RnIn.

При смешанном соединении сопротивлений, т.е. при наличии участков электрической цепи с последовательным и параллельным соединением сопротивлений, эквивалентное сопротивление цепи определяется в соответствии с выражением

Во многих случаях оказывается целесообразным также преобразование сопротивлений, соединенных треугольником (рисунок 1.5), эквивалентной звездой (рисунок 1.5).

Рисунок 1.5 Электрическая цепь с соединением сопротивлений треугольником и звездой

При этом сопротивления лучей эквивалентной звезды определяют по формулам:

R1 = ; R2 = ; R3 = ,

где R1, R2, R3 - сопротивления лучей эквивалентной звезды сопротивлений;

R12, R23, R31 - сопротивления сторон эквивалентного треугольни-ка сопротивлений. При замене звезды сопротивлений эквивалентным треугольником сопротивлений, сопротивления его рассчитывают по формулам:

R31 = R3 + R1 + R3R1/R2; R12 = R1 + R2 + R1R2/R3; R23 = R2 + R3 + R2R3/R1.